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Let [,k]n
k=0 , n<m, be a family of polynomials orthogonal with respect to the

positive semi-definite bilinear form

( g, h)d :=
1
m

:

m

j=1

g(xj) h(xj), xj :=&1+(2j&1)�m.

These polynomials are known as Gram polynomials. The present paper investigates
the growth of |,k(x)| as a function of k and m for fixed x # [&1, 1]. We show that
when n�2.5m1�2, the polynomials in the family [,k]n

k=0 are of modest size on
[&1, 1], and they are therefore well suited for the approximation of functions on
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this interval. We also demonstrate that if the degree k is close to m, and m�10,
then ,k(x) oscillates with large amplitude for values of x near the endpoints of
[&1, 1], and this behavior makes ,k poorly suited for the approximation of func-
tions on [&1, 1]. We study the growth properties of |,k(x)| by deriving a second
order differential equation, one solution of which exposes the growth. The connec-
tion between Gram polynomials and this solution to the differential equation
suggested what became a long-standing conjectured inequality for the confluent
hypergeometric function 1F1 , also known as Kummer's function, i.e., that

1F1((1&a)�2, 1, t2)� 1 F1(1�2, 1, t2) for all a�0. In this paper we completely
resolve this conjecture by verifying a generalization of the conjectured inequality
with sharp constants. � 1998 Academic Press

1. INTRODUCTION

Let f be a smooth function defined on the closed interval [&1, 1] and
assume that f is explicitly known only at the m equidistant points

xk :=&1+(2k&1)�m, 1�k�m. (1)

We wish to approximate f on [&1, 1] by a polynomial of degree n, where
n<m. Introduce the positive semi-definite bilinear form

(g, h)d :=
1
m

:
m

k=1

g(xk) h(xk) (2)

for functions f, g continuous on [&1, 1], and define the associated discrete
semi-norm

&g&d :=(g, g)1�2
d . (3)

Let [,k]m&1
k=0 be the family of polynomials that are orthogonal with respect

to the bilinear form (2), have positive leading coefficient and are nor-
malized so that &,k&d=1. The ,k are known as Gram polynomials. These
polynomials are discussed, e.g., by Dahlquist and Bjo� rck [7, Sect. 4.4.4],
Hildebrand [12, Sects. 7.13 and 7.16], and Szego� [20, Sect. 2.8].

Let 6n denote the set of all polynomials of degree at most n. The polyno-
mial 8n # 6n , that solves the discrete least-squares approximation problem

& f&8n&d= min
8 # 6n

& f&8&d , (4)

is given by

8n(x) := :
n

k=0

;k ,k(x), ;k :=(,k , f )d (5)
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and is therefore simple to compute. It is the purpose of the present paper
to investigate the conditions on n under which the solution 8n of (4) also
approximates f well with respect to the uniform norm

&g&� := sup
x # [&1, 1]

| g(x)|.

In order to gain some insight into the behavior of & f&8n &� , we first
review two special cases: n<<m and n=m&1. We begin with the former.
Let [ pk]n

k=0 denote the Legendre polynomials normalized so that &pk&=1,
where we define

(g, h) := 1
2 |

1

&1
g(x) h(x) dx, (6)

&g& :=(g, g) 1�2 (7)

for all square integrable functions on [&1, 1]. Analogously to (5), the
solution Pn # 6n of the (continuous) least-squares problem

& f&Pn &= min
P # 6n

& f&P&

can be written as

Pn(x)= :
n

k=0

(pk , f ) pk(x).

In [6, p. 345] Brass proved the following result.

Theorem 1.1. Let d_ be a distribution on [&1, 1], and let [qk]n+1
k=0 be

a family of orthogonal polynomials with respect to d_. Assume the normaliza-
tion �1

&1 q2
k(x) d_(x)=1. Let d_ be such that

(i) �1
&1 f (x) d_(x)=�1

&1 f (&x) d_(x) for any f # C[&1, 1],

(ii) &qk &�=qk(1), k=0, 1, ..., n+1.

Assume that f # Cn+1[&1, 1], and let 'k :=�1
&1 f (x) qk(x) d_(x). Then

" f& :
n

k=0

'k qk"��
&qn+1 &�

&q (n+1)
n+1 &�

& f (n+1)&� .

Sharpness follows by letting f =qn+1 .
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We apply this result and use the known properties of the Legendre poly-
nomials, including the fact that &pk &�= pk(1), to obtain

& f&Pn&��
& f (n+1)&�

(n+1)!
&pn+1&� lim

x � �
(xn+1�pn+1(x)). (8)

This inequality is used in the proof of the following bound.

Proposition 1.2. Assume that m>n, and let 8n be given by (5). Then,
for f # Cn+1[&1, 1],

& f&8n&��
& f (n+1)&�

2n(n+1)!
}
?1�2

2
n1�2(1+O(n&1))+ĉnO(m&2), (9)

where the O(n&1)-term is independent of m and the O(m&2)-term is inde-
pendent of n. The constant ĉn is independent of f and m.

Proof. The bilinear form (2) corresponds to a discretization by the rec-
tangle rule of (6), which has a discretization error O(m&2). Therefore, there
are constants ck , such that for each k,

,k(x)= pk(x)+ckO(m&2), m � �, (10)

uniformly for x # [&1, 1]; see Wilson [21] for details. It follows from (10)
that there are constants ĉn , such that for each n,

& f&8n&��& f&Pn &�+&Pn&8n&�

=& f&Pn&�+ĉnO(m&2), m � �. (11)

Substitute (8) into (11) and use the following equalities that follow from
results in [20, Sect. 4.7],

&pn+1&�=(2n+3)1�2, (12)

lim
x � �

(xn+1�pn+1(x))=2n \2n+1
n +

&1

(2n+3)&1�2, (13)

and apply Stirling's formula to bound the binomial coefficient in (13). This
shows the proposition. K

Let Qn # 6n solve the uniform-norm approximation problem

& f&Qn&�= min
Q # 6n

& f&Q&� .

Then, for f # Cn+1[&1, 1],

& f&Qn&��
& f (n+1)&�

2n(n+1)!
, (14)
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see Meinardus [15, Theorem 60]. The bound (14) is sharp. The closeness
of the bounds (9) and (14) for large m suggests that for m sufficiently large
the polynomial 8n , given by (5), is a good approximation of f also when
the error is measured in the uniform norm.

We turn to the case when n=m&1. Then 8n interpolates f at the
nodes (1). A well-known difficulty arises: even for a function f analytic on
[&1, 1], the approximant 8n may oscillate with large amplitude near the
endpoints of [&1, 1], and the amplitude may increase with n. An analysis
of this behavior, known as the Runge phenomenon, is presented by Runge
[19], and more recently by Rivlin [18] and Li and Saff [14]. The dif-
ficulty is caused by the exponential growth with n of the norm of the inter-
polation operator; see [18, p. 99].

A bound analogous to (8) for Gram polynomials is shown to be valid in
Section 2. This suggests that 8n , given by (5), approximates analytic func-
tions f well on [&1, 1] if the degree n is small enough in relation to m, so
that &,n+1&� stays bounded as n and m increase. We therefore need to
study the growth of ,n(x) as a function of m, n, and x. In Section 3 we
derive a family of second order ordinary differential equations from the
three-term recurrence relation for the ,n . For each fixed value of x #
[&1, 1], we obtain a differential equation that describes the behavior of
,n(x) for large values of m and n. The differential equation as well as the
initial conditions on the solution depend on the parameter x # [&1, 1].
The solution of each initial value problem can be expressed in terms of the
confluent hypergeometric function

F (a, c, z) :=1F1(a ; c ; z) := :
�

n=0

(a)n

(c)n n!
zn, (15)

where (a)n :=1(a+n)�1(a) is the Pochhammer symbol and 1 denotes the
1-function. Different values of x correspond to different values of the
parameter a. The function (15) is also known as Kummer's function.

Section 4 shows that the solution of the initial value problem corre-
sponding to x=1 dominates the solutions corresponding to &1�x<1.
Therefore, it suffices to consider only the former solution when studying
the growth of &,n&� as m and n increase. The fact that the solution corre-
sponding to x=1 dominates solutions associated with the other values of
x is equivalent to the inequality

F \1&`
2

, 1, z+�F (1�2, 1, z) for all `�0 and z�0. (16)

The proof of (16) given in Section 4 is believed to be new.
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Our study of solutions to the differential equation shows that for large
values of m and n, the norm &,n&� is nearly invariant under changes in n
and m, whenever the ratio n�m1�2 is kept constant. Moreover, 8n defined by
(5) is a good approximant of f in the uniform norm, provided that n is not
larger than a small multiple of m1�2, say n�2.5m1�2. Numerical examples
that illustrate the behavior of the Gram polynomials are presented in
Section 5.

The relevance of the ratio n�m1�2 has previously been noted by Bjo� rk [5]
and Zaremba [22] in their investigation of Gram polynomials. Closely
related problems are also considered in [9, 10, 13, 16, 18]. Our method of
investigation also can be used to analyze classes of orthogonal polynomials
other than Gram polynomials.

2. GRAM POLYNOMIALS

The Gram polynomials introduced in Section 1 satisfy the three-term
recurrence relation, for 1�n<m,

,n(x)=2:n&1x,n&1(x)&
:n&1

:n&2

,n&2(x), (17)

:n&1 :=
m
n \

n2&1�4
m2&n2+

1�2

, (18)

with ,0(x) :=1, ,&1(x) :=0, and :&1 :=1; see, e.g., [7, (4.4.24)�(4.4.26)].

Theorem 2.1. Each Gram polynomial ,n , 0�n<m, can be written as a
non-negative linear combination of Legendre polynomials pj , 0� j�n. In
particular,

&,n&�=,n(1), 0�n<m. (19)

Proof. The theorem can be shown directly by induction. It follows also
from a more general result by Askey [2, Theorem 1]. Here we verify that
the conditions of Theorem 1 in [2] are satisfied. Let [,n*]m&1

n=0 be monic
Gram polynomials associated with the bilinear form (2), and let [ pn*]�

n=0

be monic Legendre polynomials. Then

,*n+1(x)=x,n*(x)&*n,*n&1(x), 0�n�m&2,

p*n+1(x)=xpn*(x)&$np*n&1(x), n=0, 1, ...,
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where

*n :=
n2

4n2&1 \1&
n2

m2+ ,

$n :=
n2

4n2&1

and ,0*(x) :=p0*(x) :=1, ,*&1(x)= p*&1(x)=0. We have to show that
$k�*n>0 for 1�k�n and 0�n�m&2. But $k decreases as k�1
increases, and $n�*n>0. Thus, the conditions of [2, Theorem 1] are
satisfied, and, therefore,

,n*(x)= :
n

j=0

anj pj*(x) (20)

with anj�0 for all 0� j�n and 0�n<m. The inequality (19) now follows
from the representation (20) and the fact that &pj*&�= pj*(1). K

It follows from (19) and Theorem 1.1 that the error bound

& f&8n&��
& f (n+1)&�

(n+1)!
&,n+1&� lim

x � �
(xn+1�,n+1(x)), (21)

which is analogous to (8), is valid. Substitution of f :=,n+1 into (21)
shows the sharpness of the bound.

3. A DIFFERENTIAL EQUATION MODEL

A differential equation is derived that approximates the three-term
recurrence relation for ,n(x). The solution of the differential equation is a
function of (n& 1

2)�m1�2. In order to derive the differential equation, we first
introduce { :=n�m1�2. Then (18) can be written as

:n&1=(1& 1
4{&2m&1)1�2 (1&{2m&1)&1�2. (22)

Let {0 and {1 be constants, such that 0<{0<{1<�, and consider n as a
function of {. We obtain from (22) that

:n&1=1+ 1
2 ({2& 1

4{&2) m&1+O(m&2), m � �, (23)
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where the convergence in (23) is uniform for {0�{�{1 . Note that the
bound n�{0m1�2 implies that n � � as m � �. From (22), we also obtain

:n&1

:n&2

=1+({+ 1
4 {&3) m&3�2+O(m&2), m � �, (24)

uniformly for {0�{�{1 . Let x :=1&`�m. Then (17) can be written in the
form

,n(x)&2,n&1(x)+,n&2(x)
m&1 &2m(:n&1&1) ,n&1(x)

&m \1&
:n&1

:n&2+ ,n&2(x)+2`:n&1 ,n&1(x)=0. (25)

Substituting (23) and (24) into (25) yields

,n(x)&2,n&1(x)+,n&2(x)
m&1

=({2& 1
4 {&2&2`) ,n&1(x)&({+ 1

4 {&3) m&1�2,n&2(x)

+,n&1(x) O(m&1)+,n&2(x) O(m&1), m � �, (26)

where the convergence is uniform for {0�{�{1 . Introduce t :={& 1
22{,

2{ :=m&1�2, and substitute

,(t) :=,n&1(x)�- 2m1�2 (27)

into (26). The change of variables from { to t makes the O(m&1�2)-term
vanish. We obtain

,(t+2t)&2,(t)+,(t&2t)
(2t)2 =(t2& 1

4 t&2&2`) ,(t)+O(2t2), 2t � 0,

and, hence,

d 2

dt2 ,(t)=(t2& 1
4 t&2&2`) ,(t)+O(2t2), 2t � 0. (28)
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The convergence in (28) is uniform for t0�t�t1 , where t0 , t1 are arbitrary
but fixed constants, such that 0<t0<t1<�. From (28) we obtain the
differential equation

d 2

dt2 ,(t)=(t2& 1
4 t&2&2`) ,(t). (29)

The general solution of (29) is given by

,(t)=t1�2e&t2�2(A1 F1(
1
2 (1&`), 1, t2)+BU( 1

2 (1&`), 1, t2)), (30)

where A, B are arbitrary constants, F= 1F1 is Kummer's function (15), and
U is a linearly independent logarithmic solution to Kummer's equation; see
[1, p. 504] for the definition of U. The differential equation model (28),
the solution (30) with A=1 and B=0, and Eq. (37) below were first
suggested in [8].

We are interested in studying &,n&�=,n(1), and therefore choose `=0
in (29) and (30). This value of ` corresponds to x=1. Other choices of `
are discussed below. For `=0, the solution (30) simplifies to, see [1, (13.6)],

,(t)=t1�2(AI0(t2�2)+B?&1�2K0(t2�2)),

where I0 and K0 are modified Bessel functions of zeroth order of the first
and second kind, respectively. We note that, see [1, Chapt. 9],

t1�2I0(t2�2)=?&1�2t&1�2et2�2(1+O(t&2)), t � �,

t1�2K0(t2�2)=?1�2t&1�2e&t2�2(1+O(t&2)), t � �,

which shows that t1�2I0(t2�2) is a dominating solution of (29) as t increases.
Moreover,

t1�2I0(t2�2)=t1�2(1+O(t4)), t � 0,
(31)

t1�2K0(t2�2)=t1�2((&2 ln(t�2)+#) I0(t)+O(t4)), t � 0,

where #r0.577 denotes Euler's constant.
We turn to the initial conditions. Since &pn&1&= pn&1(1), we obtain

from (10) and (12), that for fixed n,

,n&1(1)=(2n+1)1�2+cn&1O(m&2)

=- 2m1�2 t1�2+cn&1O(m&2), m � �. (32)
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Substituting (32) into (27) yields

,(t)=t1�2(1+O(t4)), t � 0,

and in view of (31), we obtain

,(t)&t1�2I0(t2�2)=t1�2O(t4), t � 0, (33)

where the power of t in the O(t4)-factor cannot be increased. Thus, the
function

,(0)(t) :=t1�2I0(t2�2) (34)

can be used to approximate ,n(1)�- 2m1�2 in the following way. Let ,(t) be
defined by (27) with x=1, and select t0>0 sufficiently small so that the
right-hand side of (33) is small for 0�t�t0 . Analogously to (27), define

,� n&1(x) :=- 2m1�2 ,(0)(t), t :=(n& 1
2)�m1�2, t0�t�t1 ,

and choose m large enough so that ,� n&1(1) is a good approximate solution
of the difference equation (25) for t0�t�t1 . Since ,(0) is a dominating
solution of (29), it models the behavior of the scaled polynomials
,n(x)�- 2m1�2 at x=1 fairly well already for modest values of m. This is
illustrated by numerical examples in Section 5.

We next determine initial conditions for `>0. For bounded `>0 and
fixed n, we obtain, by (10), that

,n&1(1&`�m)= pn&1(1&`�m)+cn&1O(m&2)

= pn&1(1)+c~ n&1O(m&1), m � �,

where the constant c~ n&1 is independent of m. For ,(t) defined by (27), with
x=1&`�m, we have ,(t)=t1�2(1+O(t2)), t � 0. Analogously to (33), we
find that

,(t)&t1�2e&t2�2F ( 1
2 (1&`), 1, t2)=t1�2O(t2), t � 0.

The solution of (29) that models the behavior of ,n&1(1&`�m)- 2m1�2 for
`>0 is therefore

,(`)(t) :=t1�2e&t2�2F ( 1
2 (1&`), 1, t2). (35)
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Note that ,(`)(t) � ,(0)(t) as ` � 0. The fact that &,n&�=,n(1) suggests
the inequality

,(`)(t)�,(0)(t) for all `�0, t�0, (36)

which is equivalent with (16). We will show (36) in Section 4.
Let ` :=2k+1 for some integer 0�k<m. Then x :=1&`�m is the node

xm&k defined by (1), and we obtain from (35) that the solution

,(`)(t)=t1�2e&t2�2F (&k, 1, t2)=t1�2e&t2�2Lk(t2) (37)

of (29) models the behavior of ,n&1(1&`�m)�- 2m1�2. Here Lk(x) denotes
a Laguerre polynomial of degree k; see [1, (22.5.54)]. The fact that
,(`)(t) � 0 as t � � agree well with the observed behavior of the polyno-
mials ,n&1 at the nodes; see Table III of Section 5.

4. AN INEQUALITY FOR KUMMER'S FUNCTION

Inequality (19), the connection between Gram polynomials and the
confluent hypergeometric function exposed in Section 3, and numerical
evidence suggested the stronger inequality (16). The latter inequality
was first presented as a conjecture in 1985 [3], and is also discussed in
[4, p. 21]. For completeness, and because of its independent interest, we
verify a generalization of this conjecture with sharp constants.

Theorem 4.1. For all `�0, x�0, and c�1�2

F \1&`
2

, c, x+�F (1�2, c, x). (38)

Moreover, c�1�2 is sharp, i.e., for c<1�2 and x>0, there is a `>0 such
that inequality (38) fails.

Proof. Suppose that x>0 and `>0, and consider the special case
c=1�2. We will make use of the following classical identity, see [11,
p. 1085, No. 9.211-3],

F (&&, :+1, x)=
1 (:+1)

1 (:+&+1)
exx&:�2 |

�

0
e&tt&+:�2J:(2 - xt) dt, (39)

for :+&+1>0, where J: is the Bessel function of order :. Using identity
(39) with &=(`&1)�2 and :=&1�2, it follows that :+&+1=`�2>0, and

J:(z)=J&1�2(z)=� 2
?z

cos(z),
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see [11, p. 977, No. 8.464-2]. Therefore,

F \1&`
2

, 1�2, x+=ex 1 (1�2)
1 (`�2)

x1�4 |
�

0
e&tt`�2&3�4J&1�2(2 - xt) dt

=ex 1 (1�2)
1 (`�2)

x1�4 |
�

0
e&tt`�2&3�4 � 2

2? - xt
cos(2 - xt) dt

=ex 1
1 (`�2) |

�

0
e&tt`�2&1 cos(2 - xt) dt

�ex 1
1 (`�2) |

�

0
e&tt`�2&1 dt

=ex=F (1�2, 1�2, x),

which implies that

F \1&`
2

, c, x+�F (1�2, c, x) for c=1�2 and for all x�0 and `�0.

Now suppose that c>1�2. We wish to relate F (a, c, x) to F (a, 1�2, x).
The identity, see [11, p. 863, No. 7.613-1],

F (a, c, x)=
1 (c) x1&c

1 (#) 1 (c&#) |
x

0
t#&1(x&t)c&#&1 F (a, #, t) dt for c>#>0,

with x>0, `>0, and c>#=1�2, yields

F \1&`
2

, c, x+=
1 (c) x1&c

1 (1�2) 1 (c&1�2) |
x

0
t&1�2(x&t)c&3�2 F \1&`

2
, 1�2, t+ dt

�
1 (c) x1&c

1 (1�2) 1 (c&1�2) |
x

0
t&1�2(x&t)c&3�2 F (1�2, 1�2, t) dt

=F (1�2, c, x), (41)

where the inequality in (41) follows from (40) and the fact that

1 (c) x1&c

1 (1�2) 1 (c&1�2)
t&1�2(x&t)c&3�2>0
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for x>t�0 and c>1�2. This establishes that

F \1&`
2

, c, x+�F (1�2, c, x) for all `�0, x�0, and c�1�2.

The sharpness of c=1�2 will follow from (the proof of) Theorem 4.2. K

Another concise version of inequality (42) is revealed when it is
expressed in terms of the Whittaker functions M*, + , which are given by, see
[11, p. 1087, No. 9.220-2],

M*, +(x) :=x++1�2e&x�2F (+&*+ 1
2 , 1+2+, x).

Theorem 4.2. Suppose that *�+�&1�4. Then for all x�0,

M*, +(x)�M+, +(x). (43)

Moreover, +=&1�4 is sharp, i.e., for any +<&1�4 and x>0, there is a
*>+ such that inequality (43) is invalid.

Proof. Suppose that &1�4�+<* and x>0. For c=1+2+ and
(1&`)�2=+&*+ 1

2 it follows that c�1�2 and `=2(*&+)>0. We have

M*, +(x)=x++1�2e&x�2F (+&*+ 1
2 , 1+2+, x)

=xc�2e&x�2F \1&`
2

, c, x+
�xc�2e&x�2F (1�2, c, x)

=M+, +(x), (44)

where the inequality (44) follows from (42). Therefore, inequality (43)
holds for all *�+� &1�4 and x�0.

In order to demonstrate the sharpness of +=&1�4, we note the asymp-
totic relationship for large *>0 given by, see [11, p. 1089, No. 9.228],

M*, +(x)t
1 (1+2+)

- ?
*&+&1�4x1�4 cos \2 - *x&+?&

?
4+ .

Now let x0>0 and +0 # (&1�2, &1�4) both be fixed. For each positive
integer n, let *n satisfy

2 - *n x0 &+0?&?�4=2n?, i.e., *n=\2n?++0 ?+
?
4+

2

<(4x0).
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Since &+0& 1
4>0, it follows that *&+0&1�4

n � � as n � �. Thus, the
expression 1 (1+2+0)�- ? } *&+0&1�4

n x1�4
0 can be made arbitrarily large by

choosing a sufficiently large positive integer n. In particular, there is a *n

sufficiently large, such that

M*n , +0
(x0)t

1 (1+2+0)

- ?
*&+0&1�4

n x1�4
0 cos \2 - *n x0 &+0?&

?
4+

=
1 (1+2+0)

- ?
*&+0&1�4

n x1�4
0 cos(2n?)

=
1 (1+2+0)

- ?
*&+0&1�4

n x1�4
0 } 1

>M+0 , +0
(x0).

Therefore, for each x>0 and + # (&1�2, &1�4), there is a *>+, such
that M*, +(x)>M+, +(x). This proves the sharpness of +=&1�4, and,
hence, the sharpness of c=1+2+=1�2 in Theorem 4.1. K

5. NUMERICAL EXAMPLES

The behavior of the Gram polynomials ,n is displayed in three tables.
The tables compare ,n(x), for several values of x, with the function ,(`)(t),
which is given by either (34), (35), or (37) depending on the value of `.
Throughout this section x :=1&`�m and t :=(n& 1

2)�m1�2. We use the
notation M(E) for the number M } 10E in the tables. All computations were
carried out on a VAX 11�780 computer in double precision arithmetic, i.e.,
with about 15 significant digits.

Table I shows the error (,n&1(x)�- 2m1�2&,(`)(t))�- t for `=0 and
`=1�2. Columns 4 and 5 show that ,n&1(1)>,n&1(1& 1

2 m), in agreement
with our analysis. Columns 6 and 7 illustrate the convergence of the error
(,n&1(x)�- 2m1�2&,(t))�- t as m increases and t is in a fixed interval.
Note that the error is positive.

Table II displays the rapid growth of ,(0)(t) with t. Recall that
- 2m1�2,(0)(t) approximates ,n(1) for t=(n& 1

2)�m1�2. The fast growth of
,(0)(t) with t indicates that ,n(1) grows rapidly with t=(n& 1

2)�m1�2. The
table suggests that the choice of m and n should be such that t=
(n& 1

2)�m1�2�2.5 in order to keep the norm &,n&� modest. The norm
&,n&1&=,n&1(1) can be determined from Table I for such values of m and n.

Table III shows the behavior of ,n&1(xm)�- 2m1�2, where the node
xm is defined by (1). Thus, `=1. The table shows that both , (1)(t) and
,n&1(xm)�- 2m1�2 are small for large values of t.
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TABLE I

Accuracy for Increasing m for t in a Fixed Interval; x=1&`�m

,n&1(x)�- 2m1�2 \,n&1(x)

- 2m1�2
&,(`)(t)+<- t

m n&1 t `=0 `= 1
2 `=0 `= 1

2

20 1 0.34 5.80(&1) 5.65(&1) 4.61(&4) 3.37(&3)
20 5 1.23 1.29 8.67(&1) 1.22(&2) 6.53(&3)
20 10 2.35 7.08 2.48 6.05(&1) 1.99(&1)
40 1 0.24 4.87(&1) 4.81(&1) 1.15(&4) 1.62(&3)
40 5 0.87 9.68(&1) 7.97(&1) 2.06(&3) 2.53(&3)
40 10 1.66 2.01 1.02 2.42(&2) 8.98(&3)
40 15 2.45 8.29 2.81 4.02(&1) 1.30(&1)
80 1 0.12 4.10(&1) 4.07(&1) 2.87(&5) 7.97(&4)
80 5 0.61 7.92(&1) 7.19(&1) 4.57(&4) 9.77(&4)
80 10 1.17 1.22 8.50(&1) 2.53(&3) 1.48(&3)
80 15 1.73 2.19 1.06 1.52(&2) 5.51(&3)
80 20 2.29 5.65 2.04 1.07(&1) 3.53(&2)
80 21 2.41 7.17 2.48 1.60(&1) 5.21(&2)

TABLE II

Growth of ,(0)(t) :=t1�2I0(t2�2)

t ,(0)(t)

2.0 3.22
2.5 8.57
3.0 3.03(1)
3.5 1.41(2)
4.0 8.55(2)

TABLE III

m=81 and `=1

t ,(1)(t) n&1 ,n&1(xm)�- 2m1�2

0.5 6.24(&1) 4 6.25(&1)
1.5 3.98(&1) 13 3.96(&1)
2.5 6.95(&2) 22 6.68(&2)
3.5 4.09(&3) 31 3.48(&3)
4.5 8.50(&5) 40 5.32(&5)
5.5 1.33(&7) 49 2.07(&7)
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